Correlation-regression using SPSS

Scatter plot: Graph/Legacy dialogs/(Scatter/dot)/SimpleScatter/Define/ put the appropriate variables into the windows X and Y .
Fit a line into the graphs: double clilkck into the figure, then Elements/Fit line/OK, close the new windows).

Calculation the coefficient of correlation and preparing a scatterplot with a line:

Analyse/Regression/Curve estimation, put the appropriate variables into the windows Dependent and Independent, \boxtimes Display ANOVA table.

Problems

Open SPSS and open a data file fieed out by the students! (Data:E/Data/Biostat=quest03en.sav) or QUEST2010.sav.

1. Examine the relationship of the body height (x) and body mass(y) . Prepare a scatterplot.
a. What is the direction of the relationship?
b. Is the relationship linear?
c. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.
d. $\mathrm{r}=$
e. $r^{2}=$
f. Equation of the line:
2. Examine the relationship of the body height (x) and ideal body height (y) . Prepare a scatterplot..
a. Is the relationship linear?
b. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.
c. $\mathrm{r}=$
d. $\mathrm{r}^{2}=$
e. Equation of the line:
3. Examine the relationship of age (x) and body mass (y). Prepare a scatterplot.
a. Is the relationship linear?
b. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.
c. $\mathrm{r}=$
d. $\mathrm{r}^{2}=$
e. Equation of the line:
4. Find other continuous variables int he data set and examine their relationship.
a. Is the relationship linear?
b. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.
c. $\mathrm{r}=$
d. $\mathrm{r}^{2}=$
e. Equation of the line: \qquad

Nonlinear relationships

1. Type int he following data. Examine the relatioship between x and y , then between x and $\log \mathrm{y}$!

Calculate $\ln \mathrm{y}$-t, and examine the relationship between x and $\ln \mathrm{y}$!

x : idő (óra)	y	$\log _{10} y$	$\ln y$
1	184.33	2.27	
4	87.63	1.94	
8	33.05	1.52	
12	9.30	.97	
24	2.80	.45	

Give the equation of the relationship!
2. Open the file clinchem2049.sav and run the appropriate program for regression!

Logarithmic scale (10 based)
Analyse/regression/Curve estimation/ PCSK9 -> Independent, lgLDLapoBPR -> Dependent, Models: linear, V Display ANOVA table
Equation:
r: \qquad
r^{2} : \qquad

Logarithmic scale (e based)
Analyse/regression/Curve estimation/ PCSK9 ->Independent, lnLDLapoBPR -> Dependent, Models: linear, V Display ANOVA table
Equation:
r:
r^{2} : \qquad
Linear scale:
Analyse/regression/Curve estimation/ PCSK9 ->Independent, LDLapoBPR -> Dependent, Models:
logarithmic, 『 Display ANOVA table
Equation:
r:
r^{2} :

