Correlation-regression using SPSS

Scatter plot: Graph/Legacy dialogs/(Scatter/dot)/SimpleScatter/Define/ put the appropriate variables into the windows X and Y.

Fit a line into the graphs: double clilkck into the figure, then Elements/Fit line/OK, close the new windows). Calculation the coefficient of correlation and preparing a scatterplot with a line:

Analyse/Regression/Curve estimation, put the appropriate variables into the windows Dependent and Independent, ☑ Display ANOVA table.

Problems

Open SPSS and open a data file fieed out by the students! (Data:E/Data/Biostat=quest03en.sav) or QUEST2010.sav.

- 1. Examine the relationship of the body height (x) and body mass(y). Prepare a scatterplot.
 - a. What is the direction of the relationship?
 - b. Is the relationship linear ?
 - c. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.

d. r=

e. $r^2 =$

f. Equation of the line:

2. Examine the relationship of the body height (x) and ideal body height (y). Prepare a scatterplot..

- a. Is the relationship linear?
- b. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.

- c. r=
- d. $r^2 =$
- e. Equation of the line:

3. Examine the relationship of age (x) and body mass (y). Prepare a scatterplot.

- a. Is the relationship linear?
 - b. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.

- c. r=
- d. $r^2 =$
- e. Equation of the line:
- 4. Find other continuous variables int he data set and examine their relationship.
 - a. Is the relationship linear ?
 - b. Is the fit good?

If the fit is linear, find the value of the coefficient of correlation and the equation of the regression line.

- c. r=d. $r^2=$
- e. Equation of the line:

Nonlinear relationships

1. Type int he following data. Examine the relatioship between x and y, then between x and log y!

x: idő (óra)	у	$log_{10} y$	ln y
1	184.33	2.27	
4	87.63	1.94	
8	33.05	1.52	
12	9.30	.97	
24	2.80	.45	
1 1 / 1 1 1			

Calculate ln y-t, and examine the relationship between x and ln y!

Give the equation of the relationship!

2. Open the file clinchem2049.sav and run the appropriate program for regression!

Logarithmic scale (10 based)

Analyse/regression/Curve estimation/ PCSK9 ->Independent, lgLDLapoBPR -> Dependent, Models: linear, ☑ Display ANOVA table

Equation:
r:
r ² :

Logarithmic scale (*e* based)

Analyse/regression/Curve estimation/ PCSK9 ->Independent, lnLDLapoBPR -> Dependent, Models: linear, ☑ Display ANOVA table

Equation:	
r:	
r ² :	

Linear scale:

r²: